How do I solve this ?

Given p-2 is one of the roots of the quadratic equation x^2x2 - mxx + 9 -p^2p2 = 0 . Express p in terms of m.

1 Answer
Aug 27, 2017

p = frac(2 m + 13)(m + 4)p=2m+13m+4

Explanation:

p - 2p2 is a root of f(x) = x^(2) - m x + 9 - p^(2)f(x)=x2mx+9p2.

So (p - 2)^(2) - m (p - 2) + 9 - p^(2) = 0(p2)2m(p2)+9p2=0.

Let's expand the parentheses:

Rightarrow p^(2) - 4 p + 4 - m p + 2 m + 9 - p^(2) = 0p24p+4mp+2m+9p2=0

Then, let's simplify the equation:

Rightarrow p^(2) - p^(2) - 4 p - m p + 2 m + 9 + 4 = 0p2p24pmp+2m+9+4=0

Rightarrow - p (4 + m) + 2 m + 13 = 0p(4+m)+2m+13=0

Now, let's solve for pp:

Rightarrow - p (4 + m) = - (2 m + 13)p(4+m)=(2m+13)

Rightarrow - p = - frac(2 m + 13)(4 + m)p=2m+134+m

therefore p = frac(2 m + 13)(m + 4)