Question #6b7c7
4 Answers
Where
Explanation:
Rationalizing by multiplying numerator and denominator both by
Where
Explanation:
Let,
Rationalising, we get,
Note that, the latter integral follows from,
Enjoy Maths.!
Explanation:
#I=intsqrt((a+x)/(a-x))dx=intsqrt(a+x)/sqrt(a-x)dx#
Let
#I=intsqrt(a+a-u^2)/u(-2udu)=-2intsqrt(2a-u^2)du#
Now let
Importantly, note that
#I=-2intsqrt(2acos^2theta)(sqrt(2a)costhetad theta)=-2(2a)intcos^2thetad theta#
Use
#I=-2aint(1+cos2theta)d theta=-2a(theta+1/2sin2theta)#
Use
#I=-2a(theta+sinthetacostheta)#
Recall that
Also, note that
#I=-2a(sin^-1(u/sqrt(2a))+u/sqrt(2a)sqrt(2a-u^2)/sqrt(2a))#
Rearranging:
#I=-usqrt(2a-u^2)-2asin^-1(u/sqrt(2a))#
Recall that
#I=-sqrt(a-x)sqrt(2a-(a-x))-2asin^-1(sqrt(a-x)/sqrt(2a))#
#color(white)I=color(blue)(-sqrt((a-x)(a+x))-2asin^-1(sqrt((a-x)/(2a)))+C#
Explanation:
Here is an another way to solve the Problem.
Let,
Knowing that,
the substn.
Since,
Enjoy Maths!