Question #fcb11
1 Answer
Aug 31, 2017
You are correct:
Explanation:
#I=intsqrt(x^2-1)/x^2dx#
I'm sure there are other methods of approach, but when I see square roots I immediately think of trig substitutions. Let's try
#I=intsqrt(tan^2theta)/sec^2theta(secthetatanthetad theta)#
#I=inttan^2theta/secthetad theta#
#I=int(sec^2theta-1)/secthetad theta#
#I=int(sectheta-costheta)d theta#
#I=lnabs(sectheta+tantheta)-sintheta+C#
The substitution
#tantheta=sqrt(sec^2theta-1)=sqrt(x^2-1)# #costheta=1/x# #sintheta=sqrt(1-cos^2theta)=sqrt(1-1/x^2)=sqrt(x^2-1)/x#
Thus:
#I=lnabs(x+sqrt(x^2-1))-sqrt(x^2-1)/x+C#
You were right!