How do you solve #-\frac { 5} { 3} = \frac { x ^ { 2} - 3} { x + 1}#?

1 Answer
Aug 31, 2017

#x=(-5+sqrt73)/6 color(white)(x) or color(white)(x)x=(-5-sqrt73)/6#

Explanation:

#-5/3 = (x^2 - 3)/(x + 1)#

Following these simple steps accordingly..

Cross Multiply

#-5(x + 1)= 3(x^2 - 3)#

While the minus #(-)# sign is attached to the #5# is because, in every fraction, the symbol always belongs to the numerator, if the denominator is removes..

Simplify...

#-5x - 5 = 3x^2 - 9#

Collect like terms

#3x^2 + 5x - 9 + 5 = 0#

#3x^2 + 5x - 4 = 0#

Solving the Quadratic Equation..

#x=(-b+-sqrt(b^2-4ac))/(2a)#

Where #a = 3, color(white)(x)b = 5, color(white)(x)c = -4#

#x=(-5+-sqrt(5^2-4(3)(-4)))/(2(3))#

#x=(-5+-sqrt(25 +48))/6#

#x=(-5+-sqrt73)/6#

#x=(-5+sqrt73)/6 color(white)(x) or color(white)(x)x=(-5-sqrt73)/6#