Question #2a34f

2 Answers
Aug 31, 2017

x29+16x6dx=136arctan(43x3)+constant

Explanation:

For the integral F(x)=x29+16x6dx, sub u=x3 and du=3x2dx

Then F(x)=1319+16u2du=12711+169u2du

For the integral F(x), sub t=43u and dt=43du

Then F(x)=13611+t2dt

F(x) is now in a standard form and can be evaluated as a standard integral.

F(x)=13611+t2dt=136arctant=136arctan(43u)=136arctan(43x3)+constant

Sep 1, 2017

136tan1(43x3)+C

Explanation:

x2dx9+16x6

Use the substitution x3=34tanθ,3x2dx=34sec2θdθ.

=133x2dx9+16(x3)2=1334sec2θdθ9+16(916tan2θ)

=14sec2θdθ9(1+tan2θ)

Recall that 1+tan2θ=sec2θ:

=136dθ=136θ+C

From x3=34tanθ, note that tanθ=43x3 so θ=tan1(43x3):

=136tan1(43x3)+C