Question #34e5a
1 Answer
Explanation:
I=∫x2(x2−9)32dx
Use the substitution
I=∫9sec2θ(9tan2θ)32(3secθtanθdθ)
I=∫27sec3θtanθ27tan3θdθ
I=∫sec3θtan2θdθ
I=∫1cos3θcos2θsin2θ
I=∫csc2θsecθdθ
Use
I=∫(cot2θ+1)secθdθ
I=∫(cos2θsin2θ1cosθ+secθ)dθ
I=∫(cotθcscθ+secθ)dθ
These have common integrals:
I=−cscθ+ln|secθ+tanθ|+C
Our original substitution was
tanθ=oppadj=√x2−93 cscθ=1sinθ=hypopp=x√x2−9
Hence:
I=ln∣∣∣x3+√x2+93∣∣∣−x√x2−9+C
Factor
I=ln∣∣x+√x2−9∣∣−x√x2−9+C