How do you implicitly differentiate csc(x^2/y^2)=e^(xy) csc(x2y2)=exy?
1 Answer
Explanation:
Implicit differentiation is no different from explicit differentiation. Just remember that differentiating a function of
csc(x^2/y^2)=e^(xy)csc(x2y2)=exy
d/dxcsc(x^2/y^2)=d/dxe^(xy)ddxcsc(x2y2)=ddxexy
-csc(x^2/y^2)cot(x^2/y^2)*d/dx(x^2y^-2)=e^(xy)*d/dx(xy)−csc(x2y2)cot(x2y2)⋅ddx(x2y−2)=exy⋅ddx(xy)
Use the product rule to find these derivatives. Recall that while
-csc(x^2/y^2)cot(x^2/y^2)(2xy^-2-2x^2y^-1dy/dx)=e^(xy)(y+xdy/dx)−csc(x2y2)cot(x2y2)(2xy−2−2x2y−1dydx)=exy(y+xdydx)
Expanding and rearranging to group
((2x^2csc(x^2/y^2)cot(x^2/y^2))/y-xe^(xy))dy/dx=(2xcsc(x^2/y^2)cot(x^2/y^2))/y^2+ye^(xy)⎛⎜⎝2x2csc(x2y2)cot(x2y2)y−xexy⎞⎟⎠dydx=2xcsc(x2y2)cot(x2y2)y2+yexy
Common denominators:
((2x^2csc(x^2/y^2)cot(x^2/y^2)-xye^(xy))/y)dy/dx=(2xcsc(x^2/y^2)cot(x^2/y^2)+y^3e^(xy))/y^2⎛⎜⎝2x2csc(x2y2)cot(x2y2)−xyexyy⎞⎟⎠dydx=2xcsc(x2y2)cot(x2y2)+y3exyy2
Solving for
dy/dx=(2xcsc(x^2/y^2)cot(x^2/y^2)+y^3e^(xy))/y^2*y/(2x^2csc(x^2/y^2)cot(x^2/y^2)-xye^(xy))dydx=2xcsc(x2y2)cot(x2y2)+y3exyy2⋅y2x2csc(x2y2)cot(x2y2)−xyexy
dy/dx=(2xcsc(x^2/y^2)cot(x^2/y^2)+y^3e^(xy))/(xy(2xcsc(x^2/y^2)cot(x^2/y^2)-ye^(xy))dydx=2xcsc(x2y2)cot(x2y2)+y3exyxy(2xcsc(x2y2)cot(x2y2)−yexy)