How can i solve this integral? ∫(25x√3+4x2dx
1 Answer
I got:
Explanation:
I=∫25x√3+4x2dx
Use the substitution
I=25∫√32tanθ ⎷3+4(√32tanθ)2(−2√3cotθcscθdθ)
Canceling
I=−25∫cscθ√3+3tan2θdθ
Factoring
I=−2√35∫dθsinθcosθ
Note that
I=−4√35∫dθsin2θ
I=−4√35∫csc2θdθ
The integral of cosecant is fairly standard. Look it up here if you aren't sure.
Note that I'll use the form
You'll also need to undo the
I=2√35ln|csc2θ+cot2θ|+C
Use
I=2√35ln∣∣∣12sinθcosθ+1−tan2θ2tanθ∣∣∣+C
Before proceeding we can factor
I=2√35ln|cscθsecθ+cotθ−tanθ|+C
Our original substitution was
tanθ=1cotθ=2√3x cscθ=√cot2θ+1=√3x2+42 secθ=√tan2θ+1=√3x2+4√3x
So:
I=2√35ln∣∣∣3x2+42√3x+√3x2−2√3x∣∣∣+C