Differentiate y=a^x^a^x^a----to infinity?

2 Answers
Sep 2, 2017

dy/dx=(y^2lny)/(x(1-ylnxlny))

where y=a^(x^(a^(x^cdots))) and lny=x^(a^(x^(a^cdots)))lna

Explanation:

y=a^(x^(a^(x^cdots)))

Take the natural logarithm:

lny=ln(a^(x^(a^(x^cdots))))

color(white)lny=x^(a^(x^(a^cdots)))lna

Take the natural logarithm once more:

ln(lny)=ln(x^(a^(x^(a^cdots)))lna)

color(white)ln(lny)=ln(x^(a^(x^(a^cdots))))+ln(lna)

color(white)ln(lny)=a^(x^(a^(x^cdots)))lnx+ln(lna)

color(white)ln(lny)=ylnx+ln(lna)

Taking the derivative of this last version:

d/dxln(lny)=d/dx(ylnx)+d/dxln(lna)

Using the chain rule (left) and product rule (right):

1/lny(d/dxlny)=dy/dxlnx+y/x+0

1/lny(1/y)dy/dx=dy/dxlnx+y/x

Grouping dy/dx terms:

dy/dx(1/(ylny)-lnx)=y/x

dy/dx((1-ylnxlny)/(ylny))=y/x

dy/dx=(y^2lny)/(x(1-ylnxlny))

Sep 9, 2017

(dy)/(dx) = (y^2 Log y)/(x(1 - y Logx Log y))

Explanation:

If y = a^(x^(a^(x^cdots)))

then

y = a^(x^y) then applying log to both sides

log y = x^y log(a) and now applying again log to both sides

log(logy) = y log x+log(loga) and now deriving

(dy)/(dx) =(y^2 Log y)/(x(1 - y Logx Log y))