How to integrate? sec3xcot2xdx

1 Answer
Sep 4, 2017

cscx+ln|secx+tanx|+C

Explanation:

sec3xcot2xdx=1cos3xcos2xsin2xdx=1cosx1sin2xdx

=secxcsc2xdx=secx(cot2x+1)dx

=(1cosxcos2xsin2x+secx)dx

=(1sinxcosxsinx+secx)dx=(cscxcotx+secx)dx

=cscx+ln|secx+tanx|+C