How to integrate? ∫sec3xcot2xdx
1 Answer
Sep 4, 2017
Explanation:
=∫secxcsc2xdx=∫secx(cot2x+1)dx
=∫(1cosxcos2xsin2x+secx)dx
=∫(1sinxcosxsinx+secx)dx=∫(cscxcotx+secx)dx
=−cscx+ln|secx+tanx|+C