How to express this equation in terms of m and n ?

Given log_8 3 = m and log_8 5 = n, express log_3 50 in terms of m and n.

1 Answer
Sep 4, 2017

log_3(50)=(1+6n)/(3m)

Explanation:

We need to know the logarithm rules:

  • log_a(bc)=log_a(b)+log_a(c)
  • log_a(b^c)=clog_a(b)
  • log_a(b)=log_c(b)/log_c(a)
  • log_a(a)=1

Then:

log_3(50)=log_8(50)/log_8(3)=log_8(50)/m

Splitting up 50 into its prime factorization:

=log_8(2*5^2)/m=(log_8(2)+log_8(5^2))/m=(log_8(8^(1/3))+log_8(5^2))/m

=(1/3log_8(8)+2log_8(5))/m=(1/3+2n)/m=(1+6n)/(3m)