Question #5d4b5

2 Answers
Sep 4, 2017

4t^34t3

Explanation:

You're asking for the limit:

lim_(xrarrt)(x^4-t^4)/(x-t)

Factor the numerator as a difference of squares:

=lim_(xrarrt)((x^2)^2-(t^2)^2)/(x-t)=lim_(xrarrt)((x^2+t^2)(x^2-t^2))/(x-t)

Factor x^2-t^2 with the same method:

=lim_(xrarrt)((x^2+t^2)(x+t)(x-t))/(x-t)

The x-t terms cancel:

=lim_(xrarrt)(x^2+t^2)(x+t)

We can evaluate for x=t now:

=(t^2+t^2)(t+t)=2t^2(2t)=4t^3

Sep 4, 2017

4t^3

Explanation:

Note the limit definition of the derivative for a function f(x) at a point:

f'(t)=lim_(xrarrt)(f(x)-f(t))/(x-t)

Where f(x)=x^4, this becomes:

f'(t)=lim_(xrarrt)(x^4-t^4)/(x-t)

Which fits what we're looking for! Thus, we only need to find f'(t). Well, f'(x)=4x^3, so f'(t)=4t^3.