Question #5d4b5
2 Answers
Sep 4, 2017
Explanation:
You're asking for the limit:
lim_(xrarrt)(x^4-t^4)/(x-t)
Factor the numerator as a difference of squares:
=lim_(xrarrt)((x^2)^2-(t^2)^2)/(x-t)=lim_(xrarrt)((x^2+t^2)(x^2-t^2))/(x-t)
Factor
=lim_(xrarrt)((x^2+t^2)(x+t)(x-t))/(x-t)
The
=lim_(xrarrt)(x^2+t^2)(x+t)
We can evaluate for
=(t^2+t^2)(t+t)=2t^2(2t)=4t^3
Sep 4, 2017
Explanation:
Note the limit definition of the derivative for a function
f'(t)=lim_(xrarrt)(f(x)-f(t))/(x-t)
Where
f'(t)=lim_(xrarrt)(x^4-t^4)/(x-t)
Which fits what we're looking for! Thus, we only need to find