A and b are roots of the equation 2x^2 +5x - 4. Calculate the value of (a - b)^2?

a + b = -5/2
ab = -4/2

1 Answer
Sep 6, 2017

14 1/41414

Explanation:

Sum of roots, SoR = a + b = -5/2=a+b=52

Product of roots, PoR = a*b = -4/2 =-2=ab=42=2

(a - b)^2 = a^2 + b^2 - 2ab(ab)2=a2+b22ab->ii

from
(a + b)^2 = a^2 + b^2 + 2ab(a+b)2=a2+b2+2ab, therefore
(a + b)^2 - 2ab = a^2 + b^2(a+b)22ab=a2+b2->aa

plug in aa into ii
(a - b)^2 = (a + b)^2 - 2ab - 2ab(ab)2=(a+b)22ab2ab
(a - b)^2 = (a + b)^2 - 4ab(ab)2=(a+b)24ab

Plug in values of SoR & PoR in above equation.
(a - b)^2 = (-5/2)^2 - 4(-2) = 25/4 + 8 = 14 1/4(ab)2=(52)24(2)=254+8=1414