Calculate 2π0cos2x.dx?

A) Zero
B) 2
C) 1/2
D) π
The answer is D for your reference

2 Answers
Sep 5, 2017

Yes, the correct answer is D, or π.

Explanation:

Use the power reduction formula

cos2x=1+cos2x2.

So we have:

I=2π01+cos2x2

I=122π01+cos(2x)dx

I=122π01dx+122π0cos(2x)dx

If we let u=2x in the second integral, then 12du=dx. The integral of cosu is sinu and reverse your substitution to get sin(2x).

I=12[x]2π0+12(12)[sin(2x)]2π0

The integral equals

I=12(2π)+14(sin(4π)sin(0))

I=π14(00)

I=π

Answer D, as required.

Hopefully this helps!

Sep 6, 2017

2π0cos2(x)dx

We can rewrite this:

2π0cos2(x)dx=2π0(cos2(x)sin2(x)+sin2(x))dx

Note that cos(2x)=cos2(x)sin2(x):

2π0cos2(x)dx=2π0cos(2x)dx+2π0sin2(x)dx

Rewrite sin2(x) using sin2(x)+cos2(x)=1:

2π0cos2(x)dx=2π0cos(2x)dx+2π0(1cos2(x))dx

2π0cos2(x)dx=2π0cos(2x)dx+2π0dx2π0cos2(x)dx

Add 2π0cos2(x)dx to both sides of the equation:

22π0cos2(x)dx=2π0cos(2x)dx+2π0dx

Evaluate these integrals:

22π0cos2(x)dx=12sin(2x)2π0+x2π0

22π0cos2(x)dx=12(sin(4π)sin(0))+(2π0)

22π0cos2(x)dx=2π

Dividing by 2:

2π0cos2(x)dx=π