Calculate ∫2π0cos2x.dx?
A) Zero
B) 2
C) 1/2
D) π
The answer is D for your reference
A) Zero
B) 2
C) 1/2
D)
The answer is D for your reference
2 Answers
Yes, the correct answer is
Explanation:
Use the power reduction formula
cos2x=1+cos2x2 .
So we have:
I=∫2π01+cos2x2
I=12∫2π01+cos(2x)dx
I=12∫2π01dx+12∫2π0cos(2x)dx
If we let
I=12[x]2π0+12(12)[sin(2x)]2π0
The integral equals
I=12(2π)+14(sin(4π)−sin(0))
I=π−14(0−0)
I=π
Answer
Hopefully this helps!
We can rewrite this:
Note that
Rewrite
Add
Evaluate these integrals:
Dividing by