limxrarra (x^2-a^2)/(sqrtx-sqrta)=32 What value should "a" have?
3 Answers
The value of
Explanation:
To calculate the limit
Which is an an indeterminate form
We apply l'Hôpital's rule
Therefore,
Explanation:
We have:
L = lim_(x rarr a) (x^2-a^2)/(sqrtx-sqrta) = 32
Which we can write as:
L = lim_(x rarr a) (x^2-a^2)/(sqrtx-sqrta) * (sqrtx+sqrta)/(sqrtx+sqrta)
\ \ \ = lim_(x rarr a) ((x+a)(x-a))/(x-a) * (sqrtx+sqrta)
\ \ \ = lim_(x rarr a) (x+a) (sqrtx+sqrta)
\ \ \ = (a+a) (sqrta+sqrta)
\ \ \ = (2a) (2sqrta)
\ \ \ = 4a^(3/2)
So if:
L = 32 => 4a^(3/2) =32
:. a^(3/2) =8
:. a \ \ = 4
Explanation:
Factor as a difference of squares multiple times. You may want to recall that
lim_(xrarra)(x^2-a^2)/(sqrtx-sqrta)=lim_(xrarra)((x+a)(x-a))/(sqrtx-sqrta)
We'll again use
=lim_(xrarra)((x+a)((sqrtx)^2-(sqrta)^2))/(sqrtx-sqrta)
=lim_(xrarra)((x+a)(sqrtx+sqrta)(sqrtx-sqrta))/(sqrtx-sqrta)
Now the
=lim_(xrarra)(x+a)(sqrtx+sqrta)
=lim_(xrarra)(a+a)(sqrta+sqrta)
=(2a)(2sqrta)
=4a^(3/2)=32
Thus:
a^(3/2)=8
a=(2^3)^(2/3)=2^2=4