limxrarra (x^2-a^2)/(sqrtx-sqrta)=32 What value should "a" have?

3 Answers
Sep 4, 2017

The value of a=4

Explanation:

To calculate the limit

lim_(x->a)(x^2-a^2)/(sqrtx-sqrta)=(a^2-a^2)/(sqrta-sqrts)=0/0

Which is an an indeterminate form

We apply l'Hôpital's rule

lim_(x->a)(x^2-a^2)/(sqrtx-sqrta)=lim_(x->a)((x^2-a^2)')/((sqrtx-sqrta)')

=lim_(x->a)(2x)/(1/(2sqrtx))

=4asqrta

Therefore,

4asqrta=32

a^(3/2)=32/4=8

a=8^(2/3)

a=2^2=4

a=4

Sep 4, 2017

a=4

Explanation:

We have:

L = lim_(x rarr a) (x^2-a^2)/(sqrtx-sqrta) = 32

Which we can write as:

L = lim_(x rarr a) (x^2-a^2)/(sqrtx-sqrta) * (sqrtx+sqrta)/(sqrtx+sqrta)
\ \ \ = lim_(x rarr a) ((x+a)(x-a))/(x-a) * (sqrtx+sqrta)
\ \ \ = lim_(x rarr a) (x+a) (sqrtx+sqrta)
\ \ \ = (a+a) (sqrta+sqrta)
\ \ \ = (2a) (2sqrta)
\ \ \ = 4a^(3/2)

So if:

L = 32 => 4a^(3/2) =32
:. a^(3/2) =8
:. a \ \ = 4

Sep 8, 2017

a=4

Explanation:

Factor as a difference of squares multiple times. You may want to recall that u^2-v^2=(u+v)(u-v). Expand the right hand side to confirm this equality. Using this identity:

lim_(xrarra)(x^2-a^2)/(sqrtx-sqrta)=lim_(xrarra)((x+a)(x-a))/(sqrtx-sqrta)

We'll again use u^2-v^2=(u+v)(u-v), but here u=sqrtx and v=sqrta.

=lim_(xrarra)((x+a)((sqrtx)^2-(sqrta)^2))/(sqrtx-sqrta)

=lim_(xrarra)((x+a)(sqrtx+sqrta)(sqrtx-sqrta))/(sqrtx-sqrta)

Now the sqrtx-sqrta terms cancel one another out:

=lim_(xrarra)(x+a)(sqrtx+sqrta)

=lim_(xrarra)(a+a)(sqrta+sqrta)

=(2a)(2sqrta)

=4a^(3/2)=32

Thus:

a^(3/2)=8

a=(2^3)^(2/3)=2^2=4