Question #3c650

1 Answer
Sep 10, 2017

The limit is zero.

Explanation:

As x rarr 0^-, 1/x rarr -oo.
For such x, e^(1/x) rarr 0 and the denominator of the expression goes to 1.
Therefore
As x rarr 0^-, x/(1 + e^(1/x)) rarr 0.

As x rarr 0^-+ 1/x rarr oo.
For such x, e^(1/x) rarr oo and the denominator of the expression goes to oo.
Therefore
As x rarr 0^+, 1/(1 + e^(1/x)) rarr 0, and
as x rarr 0^+, x/(1 + e^(1/x)) rarr 0.

Since the two one-sided limits exist and are equal, the overall limit is zero.