At a concession stand, five hot dogs and two hamburgers cost $11.75; two hot dogs and five hamburgers cost $11.00. How do you find the cost of one hot dog and the cost of one hamburger?

1 Answer
Sep 16, 2017

"Price of one hotdog"=1.75$Price of one hotdog=1.75$
"Price of one hamburger"=1.5$Price of one hamburger=1.5$

Explanation:

"Price of one hotdog"=xPrice of one hotdog=x
"Price of one hamburger"=yPrice of one hamburger=y

  1. 5*x+2*y=11.755x+2y=11.75
  2. 2*x+5*y=11.002x+5y=11.00

From first equation we find y in terms of x:
5*x+2*y=11.755x+2y=11.75
2*y=11.75-5*x2y=11.755x
y=(11.75-5*x)/2y=11.755x2

Putting the value of y in the second equation:
2*x+5*y=11.002x+5y=11.00
2*x+5*(11.75-5*x)/2=11.002x+511.755x2=11.00

We multiply the whole equation by 2 to get ride of the fraction:
(2*x+5*(11.75-5*x)/2=11.00)*2(2x+511.755x2=11.00)2
2*2*x+5*cancel2(11.75-5*x)/cancel2=11.00*2
4*x+5(11.75-5*x)=22.00

4*x+58.75-25*x=22.00

Subtracting 58.75 from both sides of the equation we get:
4*x+cancel58.75-25*xcancel(-58.75)=22.00-58.75
-21*x=-36.75

Multiplying the whole equation by -1 we get:
(-21*x=-36.75)*-1
21*x=36.75

Dividing both sides by 21 to isolate x, we get:
cancel21x/cancel21=36.75/21=1.75$

Substituting the value of x in equation of y we get:
y=(11.75-5*x)/2=(11.75-5*1.75)/2=1.5$

rArr "price of one hotdog"=x=1.75$
and "price of one hamburger"=y=1.5$