Question #4195c

1 Answer
Sep 17, 2017

m = - 2

Explanation:

When a quadratic equation has twin roots, its discriminant Delta is equal to zero.

The formula for the discriminant is Delta = b^(2) - 4 a c.

Let's evaluate the discriminant of our quadratic equation:

Rightarrow Delta = (8 - 2 m)^(2) - 4 (1 - m) (12)

Rightarrow Delta = 64 - 32 m + 4 m^(2) - 12 (4 - 4 m)

Rightarrow Delta = 64 - 32 m + 4 m^(2) - 48 + 48 m

Rightarrow Delta = 4 m^(2) + 16 m + 16

Then, let's set it equal to zero:

Rightarrow Delta = 0

Rightarrow 4 m^(2) + 16 m + 16 = 0

Rightarrow 4 (m^(2) + 4 m + 4) = 0

Rightarrow m^(2) + 4 m + 4 = 0

Now, let's factorise the equation using the middle-term break:

Rightarrow m^(2) + 2 m + 2 m + 4 = 0

Rightarrow m (m + 2) + 2 (m + 2) = 0

Rightarrow (m + 2) (m + 2) = 0

Rightarrow (m + 2)^(2) = 0

Rightarrow m + 2 = 0

therefore m = - 2