How do you solve -e^(-3.9n-1)-1=-3e3.9n11=3?

1 Answer
Sep 17, 2017

n = - frac(ln(2) + 1)(3.9)n=ln(2)+13.9

Explanation:

We have: - e^(- 3.9 n - 1) - 1 = - 3e3.9n11=3

Multiplying both sides of the equation by - 11:

Rightarrow - 1 (- e^(- 3.9 n - 1) - 1) = - 1 times - 31(e3.9n11)=1×3

Rightarrow e^(- 3.9 n - 1) + 1 = 3e3.9n1+1=3

Subtracting 11 from both sides:

Rightarrow e^(- 3.9 n - 1) + 1 - 1 = 3 - 1e3.9n1+11=31

Rightarrow e^(- 3.9 n - 1) = 2e3.9n1=2

Applying lnln to both sides:

Rightarrow ln(e^(- 3.9 n - 1)) = ln(2)ln(e3.9n1)=ln(2)

Using the laws of logarithms:

Rightarrow (- 3.9 n - 1)(ln(e)) = ln(2)(3.9n1)(ln(e))=ln(2)

Rightarrow (- 3.9 n - 1) times 1 = ln(2)(3.9n1)×1=ln(2)

Rightarrow - 3.9 n - 1 = ln(2)3.9n1=ln(2)

Adding 11 to both sides:

Rightarrow - 3.9 n - 1 + 1 = ln(2) + 13.9n1+1=ln(2)+1

Rightarrow - 3.9 n = ln(2) + 13.9n=ln(2)+1

Dividing both sides by - 3.93.9:

Rightarrow frac(- 3.9 n)(- 3.9) = frac(ln(2) + 1)(- 3.9)3.9n3.9=ln(2)+13.9

therefore n = - frac(ln(2) + 1)(3.9)