We have: - e^(- 3.9 n - 1) - 1 = - 3−e−3.9n−1−1=−3
Multiplying both sides of the equation by - 1−1:
Rightarrow - 1 (- e^(- 3.9 n - 1) - 1) = - 1 times - 3⇒−1(−e−3.9n−1−1)=−1×−3
Rightarrow e^(- 3.9 n - 1) + 1 = 3⇒e−3.9n−1+1=3
Subtracting 11 from both sides:
Rightarrow e^(- 3.9 n - 1) + 1 - 1 = 3 - 1⇒e−3.9n−1+1−1=3−1
Rightarrow e^(- 3.9 n - 1) = 2⇒e−3.9n−1=2
Applying lnln to both sides:
Rightarrow ln(e^(- 3.9 n - 1)) = ln(2)⇒ln(e−3.9n−1)=ln(2)
Using the laws of logarithms:
Rightarrow (- 3.9 n - 1)(ln(e)) = ln(2)⇒(−3.9n−1)(ln(e))=ln(2)
Rightarrow (- 3.9 n - 1) times 1 = ln(2)⇒(−3.9n−1)×1=ln(2)
Rightarrow - 3.9 n - 1 = ln(2)⇒−3.9n−1=ln(2)
Adding 11 to both sides:
Rightarrow - 3.9 n - 1 + 1 = ln(2) + 1⇒−3.9n−1+1=ln(2)+1
Rightarrow - 3.9 n = ln(2) + 1⇒−3.9n=ln(2)+1
Dividing both sides by - 3.9−3.9:
Rightarrow frac(- 3.9 n)(- 3.9) = frac(ln(2) + 1)(- 3.9)⇒−3.9n−3.9=ln(2)+1−3.9
therefore n = - frac(ln(2) + 1)(3.9)