Question #88084

2 Answers
Sep 17, 2017

(dy)/dx=(e^x(x-2))/x^3

Explanation:

y = (e^x)/(x^2)-1
using differential formula
d/dx (u/v)=((du)/dx.v-(dv)/dx.u)/v^2

hence here u=e^x and v=x^2
(dy)/dx=((d/dx(e^x)).x^2-(d/dx(x^2)).e^x)/(x^2)^2-d/dx(1)
(dy)/dx=((e^x).x^2-(2x).e^x)/(x^4)
(dy)/dx=(e^x.x^2-2x.e^x)/(x^4)=(xe^x-2e^x)/x^3
(dy)/dx=(e^x(x-2))/x^3

Sep 17, 2017

y' = frac(e^(x) (x - 2))(x^(3))

Explanation:

We have: y = frac(e^(x))(x^(2)) - 1

Rightarrow y' = frac(d)(dx) (frac(e^(x))(x^(2))) - frac(d)(dx) (1)

Rightarrow y' = frac(d)(dx) (frac(e^(x))(x^(2))) - 0

Rightarrow y' = frac(d)(dx) (frac(e^(x))(x^(2)))

Rightarrow y' = frac(x^(2) cdot frac(d)(dx) (e^(x)) - e^(x) cdot frac(d)(dx) (x^(2)))((x^(2))^(2))

Rightarrow y' = frac(x^(2) cdot e^(x) - e^(x) cdot 2 x)(x^(4))

Rightarrow y' = frac(e^(x) (x^(2) - 2 x))(x^(4))

Rightarrow y' = frac(x e^(x) (x - 2))(x^(4))

therefore y' = frac(e^(x) (x - 2))(x^(3))