Question #eb80b

2 Answers
Sep 18, 2017

# (x(2-9x^3))/(1-3x^3)^(2/3).#

Explanation:

Suppose that, #y=x^2(1-3x^3)^(1/3).#

Applying the Product Rule, we get,

#dy/dx=x^2*d/dx(1-3x^3)^(1/3)+(1-3x^3)^(1/3)*d/dx(x^2)....(star).#

Next, we use the Power Rule, and, the Chain Rule, to get,

#d/dx(1-3x^3)^(1/3)=1/3*(1-3x^3)^(1/3-1)*d/dx(1-3x^3),#

#=1/3*(1-3x^3)^(-2/3)*(0-3*3x^2),#

# rArr d/dx(1-3x^3)^(1/3)=(-3x^2)/(1-3x^3)^(2/3).......(star_1).#

Using #(star_1)# in #(star),# we get,

#dy/dx=x^2{(-3x^2)/(1-3x^3)^(2/3)}+(1-3x^3)^(1/3)*2x,#

#=2x(1-3x^3)^(1/3)-(3x^4)/(1-3x^3)^(2/3),#

#={2x(1-3x^3)^(1/3)(1-3x^3)^(2/3)-3x^4}/((1-3x^3)^(2/3),#

#={2x(1-3x^3)-3x^4}/(1-3x^3)^(2/3).#

# rArr dy/dx=(x(2-9x^3))/(1-3x^3)^(2/3).#

Enjoy Maths.!

Sep 18, 2017

#frac(d)(dx)(x^(2) (1 - 3 x^(3))^(frac(1)(3))) = - 3 x^(4) (1 - 3 x^(3))^(- frac(2)(3)) + 2 x (1 - 3 x^(3))^(frac(1)(3))#

Explanation:

We have: #x^(2) (1 - 3 x^(3))^(frac(1)(3))#

We need to find the derivative of the function #f(x) = x^(2) (1 - 3 x^(3))^(frac(1)(3))#.

Let's begin differentiating #f(x)# by applying the product rule:

#Rightarrow f'(x) = x^(2) cdot frac(d)(dx)((1 - 3 x^(3))^(frac(1)(3))) + (1 - 3 x^(3))^(frac(1)(3)) cdot frac(d)(dx)(x^(2))#

Then, let's use the power rule to further differentiate:

#Rightarrow f'(x) = x^(2) cdot frac(d)(dx)((1 - 3 x^(3))^(frac(1)(3))) + (1 - 3 x^(3))^(frac(1)(3)) cdot 2 x#

Now, the final bit of differentiation must be done by using the chain rule.

Suppose that:

#u = 1 - 3 x^(3) Rightarrow u' = frac(d)(dx)(1) - frac(d)(dx)(3 x^(3)) Rightarrow u' = 0 - 3 cdot 3 x^(3 - 1) Rightarrow u' = - 9 x^(2)#

#and#

#v = u^(frac(1)(3)) Rightarrow v' = frac(1)(3) u^(frac(1)(3) - 1) Rightarrow v' = frac(1)(3) u^(- frac(2)(3))#

So:

#Rightarrow f'(x) = x^(2) cdot u' cdot v' + 2 x (1 - 3 x^(3))^(frac(1)(3))#

#Rightarrow f'(x) = x^(2) cdot (- 9 x^(2)) cdot frac(1)(3) u^(- frac(2)(3)) + 2 x (1 - 3 x^(3))^(frac(1)(3))#

#Rightarrow f'(x) = - 9 x^(4) cdot frac(1)(3) (1 - 3 x^(3))^(- frac(2)(3)) + 2 x (1 - 3 x^(3))^(frac(1)(3))#

#therefore f'(x) = - 3 x^(4) (1 - 3 x^(3))^(- frac(2)(3)) + 2 x (1 - 3 x^(3))^(frac(1)(3))#