Question #eb80b

2 Answers
Sep 18, 2017

(x(2-9x^3))/(1-3x^3)^(2/3).x(29x3)(13x3)23.

Explanation:

Suppose that, y=x^2(1-3x^3)^(1/3).y=x2(13x3)13.

Applying the Product Rule, we get,

dy/dx=x^2*d/dx(1-3x^3)^(1/3)+(1-3x^3)^(1/3)*d/dx(x^2)....(star).

Next, we use the Power Rule, and, the Chain Rule, to get,

d/dx(1-3x^3)^(1/3)=1/3*(1-3x^3)^(1/3-1)*d/dx(1-3x^3),

=1/3*(1-3x^3)^(-2/3)*(0-3*3x^2),

rArr d/dx(1-3x^3)^(1/3)=(-3x^2)/(1-3x^3)^(2/3).......(star_1).

Using (star_1) in (star), we get,

dy/dx=x^2{(-3x^2)/(1-3x^3)^(2/3)}+(1-3x^3)^(1/3)*2x,

=2x(1-3x^3)^(1/3)-(3x^4)/(1-3x^3)^(2/3),

={2x(1-3x^3)^(1/3)(1-3x^3)^(2/3)-3x^4}/((1-3x^3)^(2/3),

={2x(1-3x^3)-3x^4}/(1-3x^3)^(2/3).

rArr dy/dx=(x(2-9x^3))/(1-3x^3)^(2/3).

Enjoy Maths.!

Sep 18, 2017

frac(d)(dx)(x^(2) (1 - 3 x^(3))^(frac(1)(3))) = - 3 x^(4) (1 - 3 x^(3))^(- frac(2)(3)) + 2 x (1 - 3 x^(3))^(frac(1)(3))

Explanation:

We have: x^(2) (1 - 3 x^(3))^(frac(1)(3))

We need to find the derivative of the function f(x) = x^(2) (1 - 3 x^(3))^(frac(1)(3)).

Let's begin differentiating f(x) by applying the product rule:

Rightarrow f'(x) = x^(2) cdot frac(d)(dx)((1 - 3 x^(3))^(frac(1)(3))) + (1 - 3 x^(3))^(frac(1)(3)) cdot frac(d)(dx)(x^(2))

Then, let's use the power rule to further differentiate:

Rightarrow f'(x) = x^(2) cdot frac(d)(dx)((1 - 3 x^(3))^(frac(1)(3))) + (1 - 3 x^(3))^(frac(1)(3)) cdot 2 x

Now, the final bit of differentiation must be done by using the chain rule.

Suppose that:

u = 1 - 3 x^(3) Rightarrow u' = frac(d)(dx)(1) - frac(d)(dx)(3 x^(3)) Rightarrow u' = 0 - 3 cdot 3 x^(3 - 1) Rightarrow u' = - 9 x^(2)

and

v = u^(frac(1)(3)) Rightarrow v' = frac(1)(3) u^(frac(1)(3) - 1) Rightarrow v' = frac(1)(3) u^(- frac(2)(3))

So:

Rightarrow f'(x) = x^(2) cdot u' cdot v' + 2 x (1 - 3 x^(3))^(frac(1)(3))

Rightarrow f'(x) = x^(2) cdot (- 9 x^(2)) cdot frac(1)(3) u^(- frac(2)(3)) + 2 x (1 - 3 x^(3))^(frac(1)(3))

Rightarrow f'(x) = - 9 x^(4) cdot frac(1)(3) (1 - 3 x^(3))^(- frac(2)(3)) + 2 x (1 - 3 x^(3))^(frac(1)(3))

therefore f'(x) = - 3 x^(4) (1 - 3 x^(3))^(- frac(2)(3)) + 2 x (1 - 3 x^(3))^(frac(1)(3))