How do you simplify \frac { x ^ { 2} - x y - ( x y - y ^ { 2} ) } { ( x ^ { 2} - y ^ { 2} ) }?

2 Answers
Sep 18, 2017

(x-y)/(x+y)

Explanation:

(x^2-xy-(xy-y^2))/(x^2-y^2) = (x^2-xy-xy+y^2)/(x^2-y^2)

-(x^2-2xy+y^2)/((x+y)(x-y)) = (x-y)^2/((x+y)(x-y)

= (x-y)^cancel2/((x+y)cancel((x-y))) = (x-y)/(x+y) [Ans]

Sep 18, 2017

=(x-y)/(x+y)

Explanation:

Let us begin by simplifying the numerator:

(x^2 - xy - (xy-y^2))/(x^2 - y^2) = (x^2 - xy - xy+y^2)/(x^2 - y^2)

Adding like terms,

=(x^2 - 2xy + y^2)/(x^2 - y^2)

Notice the identities in the numerator and denominator.
Expressions of the form:

a^2 - 2ab +b^2 = (a-b)(a-b)=(a-b)^2
And
a^2 - b^2 = (a+b)(a-b)

Therefore,
x^2 - 2xy +y^2= (x-y)(x-y)=(x-y)^2
And
x^2 - y^2 = (x+y)(x-y)

Let us rewrite the expression now, using the identities:
(x^2 - 2xy + y^2)/(x^2 - y^2) = ((x-y)(x-y))/((x+y)(x-y))

Then cancel out the common (x-y) in both the numerator and denominator:

=(x-y)/(x+y)