3x + 5y + 5z = −2 −3x + −1y + 0z = 7 −6x + 6y + 10z = k For what value of k is this system consistent?

3x + 5y + 5z = −2
−3x + −1y + 0z = 7
−6x + 6y + 10z = k
For what value of
k
is this system consistent?

1 Answer
Sep 21, 2017

#k=24#

Explanation:

Let's create a matrix from the system and then perform Gaussian elimination.

#((3, 5, 5, -2), (-3, -1, 0, 7), (-6, 6, 10, k))#

Let's do #R_2=>R_2+R_3# and #R_3=>R_3+2R_1#.

#=((3, 5, 5, -2), (0, 4, 5, 5), (0, 16, 20, k-4))#

Now let's do #R_1=>1/3R_1#.

#=((1, 5/3, 5/3, -2/3), (0, 4, 5, 5), (0, 16, 20, k-4))#

#R_1=>R_1-5/12R_2#

#=((1, 0, -5/12, -33/12), (0, 4, 5, 5), (0, 16, 20, k-4))#

#R_2=>1/4R_2#

#=((1, 0, -5/12, -33/12), (0, 1, 5/4, 5/4), (0, 16, 20, k-4))#

#R_3=>R_3-16R_2#

#=((1, 0, -5/12, -33/12), (0, 1, 5/4, 5/4), (0, 0, 0, k-24))#

We can stop now: recall that the bottom row translates into #0x+0y+0x=k-24#, that is, #0=k-24#. So #k=24#.