How do you solve this system of equations: #-8x - y = 14 and - 5x + y = 12#?

2 Answers
Sep 24, 2017

#x=-2# and #y=2#

Explanation:

Equation 1: #-8x-y=14#
Equation 2: #-5x+y=12#

To solve these equation try to remove one variable.

equation 1 +equation 2
#-8x-y-5x+y=14+12#
#=>-13x=26#
#=>x=-2#

Substitute value of #x# in any of equation.
Substituting value of #x# in equation 2

#-5(-2)+y=12#
#=>10+y=12#
#=>y=2#

Sep 24, 2017

#(x,y)to(-2,2)#

Explanation:

#-8x-y=14to(1)#

#-5x+y=12to(2)#

#"using the "color(blue)"substitution method"#

#"from "(2)" express y in terms of x"#

#rArry=12+5xto(3)#

#color(blue)"substitute "y=12+5x" into "(1)#

#-8x-(12+5x)=14#

#rArr-8x-12-5x=14#

#rArr-13x-12=14#

#"add 12 to both sides"#

#-13xcancel(-12)cancel(+12)=14+12#

#rArr-13x=26#

#"divide both sides by - 13"#

#(cancel(-13) x)/cancel(-13)=26/(-13)#

#rArrx=-2#

#"substitute this value into "(3)#

#rArry=12+(5xx-2)=12-10=2#

#rArr"point of intersection "=(-2,2)#
graph{(y-5x-12)(y+8x+14)((x+2)^2+(y-2)^2-0.04)=0 [-10, 10, -5, 5]}