How do you simplify #4^(1/2)8^(1/3)#?

2 Answers
Oct 2, 2017

#4^(1/2)8^(1/3)=4#

Explanation:

Remember that

#4=2 times 2= 2^2#

and

#8=4 times 2 = 2 times 2 times 2 = 2^3#

Then,

#4^(1/2)8^(1/3)=2^((2)^(1/2))2^((3)^(1/3))=2^(2/2)2^(3/3)=2^1 2^1=2(2)=4#

Oct 2, 2017

#4#

Explanation:

#4^(1/2)=(2*2)^(1/2)=(2^2)^(1/2)=2^(2/2)=2#
#8^(1/3)=(2*2*2)^(1/3)=(2^3)^(1/3)=2^(3/3)=2#
#:.4^(1/2)*8^(1/3)=2*2=4#