How do you solve #6x ^ { 2} - 5= 4#?

3 Answers
Oct 2, 2017

#x=sqrt(3/2)# or #x=-sqrt(3/2)#

Explanation:

First we subtract #4# from both sides.
#6x^2-5=4#
#6x^2-5color(blue)-color(blue)4=4color(blue)-color(blue)4#
#6x^2-9=0#

Next we add #5# to both sides of the equation:
#6x^2-5color(blue)+color(blue)5=4color(blue)+color(blue)5->#
#6x^2=9#

Divide both sides by #6#:
#(6x^2)/6=9/6->#

#x^2=9/6->#

#x^2=3/2#

We will solve #x^2=3/2# using this:If #x^2=y#, then #x=sqrty# or #-sqrty#

Therefore, #x=sqrt(3/2)# or #x=-sqrt(3/2)#

Just for fun: #x=1.2247#... #x=1.2247...#

Oct 2, 2017

Solution : #x =sqrt (3/2) , x = - sqrt (3/2)#

Explanation:

#6x^2-5=4 or 6x^2=5+4 or 6x^2=9 # or

#x^2=9/6 or x^2 = 3/2 or x = +- sqrt (3/2) #

Solution : #x =sqrt (3/2) , x = - sqrt (3/2)# [Ans]

Oct 2, 2017

#x=+-sqrt(3/2)#

Explanation:

#"isolate the "x^2" term by manipulations"#

#"add 5 to both sides"#

#6x^2cancel(-5)cancel(+5)=4+5#

#rArr6x^2=9#

#"divide both sides by 6"#

#(cancel(6)x^2 )/cancel(6)=9/6=3/2#

#rArrx^2=3/2#

#color(blue)"take the square root of both sides"#

#sqrt(x^2)=+-sqrt(3/2)larr" note plus or minus"#

#rArrx=+-sqrt(3/2)larr" exact solutions"#