How do you evaluate #2x ^ { 2} y# if # x = 2\frac { 1} { 2} ,y = - 3\frac { 3} { 5}#?
2 Answers
Oct 4, 2017
Explanation:
You can evaluate
First, it's best to turn these fractions into improper fractions:
Subbing these into the expression we get:
These fractions can be further simplified before you multiply them together:
So in short,
Oct 4, 2017
Explanation:
#"change the mixed numbers into "color(blue)"improper fractions"#
#rArr2 1/2=5/2" and "3 3/5=18/5#
#rArr2x^2y#
#=2xx(5/2)^2xx-18/5#
#=2xx25/4xx-18/5#
#color(blue)"cancel common factors "# on numerators/denominators.
#=cancel(2)^1xxcancel(25)^5/cancel(4)^2xx-18/cancel(5)^1#
#=1xx5/cancel(2)^1xx-cancel(18)^9/1#
#=1xx5xx-9=-45#