If 216 * 3^(2x)-73*3^x-3=0 and u=3^x, what is the value of u?

2 Answers
Oct 5, 2017

u=0.375

Explanation:

If color(blue)u=color(magenta)(3^x)
then
color(white)("xxx")216 * color(magenta)(3^(color(black)2x))+(-73) * color(magenta)(3^x)-3=0
becomes
color(white)("xxx")216color(blue)u^2-73color(blue)u-3=0

Using the quadratic formula (and a calculator)
color(white)("xxx")color(blue)u=(73+-sqrt((-73)^2-4 * 216 * (-3)))/(2 * 216)

color(white)("xxx")=0.375
or
color(white)("xxx")=-0.037bar(037)

...but if u=3^x then u > 0, AA x in RR
and therefore the negative version is extraneous,
leaving only
color(white)("xxx")color(blue)u=0.375

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

As a bonus we could find the value of x (approximately)

If 3^x=u
then
color(white)("xxx")log_3(3^x)=log_3(u)

color(white)("xxx")x=log_3(u)

color(white)("xxx")x=log_3(0.375)

then using a calculator
color(white)("xxx")x~~-0.892789261

Oct 5, 2017

x= -0.89

Explanation:

The equation is in the form, au^2-bu-c where u=3^x.
Since it is difficult to use x straightaway to solve the equation, we have replaced it with ā€˜u’.
Once we solve for u, we will then replace u with 3^x and find the value of x.

216u^2-73u-3=0
216*3=648 can be factorised as 81*8
216u^2+8u-81u-3=0
8u*(27u+1)-3*(27u+1)=0
(27u+1)(8u-3)=0
u=-(1/27) & (3/8)

3^x=-(1/27)=-3^-3 This solution is imaginary.

3^x=3/8
xlog3=log(3/8)=log(3)-log(8)
x=(log(3)/log(3))-(log(8)/log(3))=1-1.89=-0.89