How do you find the derivative of y = arcsin(1 - 2sin^2x)y=arcsin(1−2sin2x)?
2 Answers
We can rewrite as
siny = 1 - 2sin^2xsiny=1−2sin2x
Which in turn can be rewritten as
siny = cos(2x)siny=cos(2x)
We now differentiate implicitly on the left side and using the chain rule on the right.
cosy(dy/dx) = -2sin(2x)cosy(dydx)=−2sin(2x)
dy/dx = (-2sin(2x))/cosydydx=−2sin(2x)cosy
We know that
dy/dx = (-2sin(2x))/sqrt(4sin^2x - 4sin^4x)dydx=−2sin(2x)√4sin2x−4sin4x
We can simplify as follows:
dy/dx = (-2(2sinxcosx))/sqrt(4sin^2x(1 - sin^2x))dydx=−2(2sinxcosx)√4sin2x(1−sin2x)
dy/dx= (-2(2sinxcosx))/(2sinxsqrt(1 - sin^2x))dydx=−2(2sinxcosx)2sinx√1−sin2x
dy/dx = (-2cosx)/sqrt(cos^2x)dydx=−2cosx√cos2x
dy/dx = (-2cosx)/|cosx|dydx=−2cosx|cosx|
Depending upon the value of
Since the periodicity of
We can therefore define the derivative by the piecewise function
dy/dx = {(2, "when " pi/2 + npi ≤ x ≤ pi +npi, x in RR, n in ZZ), (-2, "when " npi ≤ x ≤ pi/2 +npi, x in RR, n in ZZ):}
Thanks to Douglas K for his guidance here!
Hopefully this helps!
Explanation:
Put