Question #4b3ff

2 Answers
Oct 11, 2017

#x=9/3#

Explanation:

Given -

#9x^2-25=0#

#9x^2=25#

#x^2=25/9#
#x=sqrt(25/9)#
#x=sqrt25/sqrt9=5/3#
#x=9/3#

Oct 11, 2017

#x=\frac{5}{3},\qquad\qquad x=-\frac{5}{3}#

Explanation:

This is the standard form of a quadratic equation, which we can find the roots of by using the quadratic formula.


Rewriting the equation:

#9x^2+0x-25=0#

Our values to plug into the formula are:

  • #a=9#

  • #b=0#

  • #c=-25#

The formula is:

#x=\frac{-b\pm\sqrt{b^2-4ac}}{2a}#

Plugging in for the variables:

#x=\frac{0\pm\sqrt{0^2-4(9)(-25)}}{2(9)}#

#x=\frac{0\pm\sqrt{0+900}}{18}#

#x=\frac{0\pm\sqrt{900}}{18}#

#x=\frac{0\pm 30}{18}#

#x=\frac{15}{18},\qquad\qquad x=-\frac{30}{18}#

#\therefore x=\frac{5}{3},\qquad\qquad x=-\frac{5}{3}#