Question #8b3ee

1 Answer
Oct 12, 2017

#f'(x) = (-9x^2)/(x^3-4)^2#

Explanation:

There are two ways to do this, each of which can get you to the correct solution.

Quotient Rule

If #f(x) = (g(x))/(h(x))#, then #f'(x) = ( h(x)*g'(x) - g(x)*h'(x) ) / ( (h(x))^2)#

#f'(x) = ( (x^3-4)(0) - (3)(3x^2) ) / (x^3-4)^2 = (-9x^2) / (x^3-4)^2#

Chain Rule

If #f(x) = g(h(x))#, then #f'(x) = g'(h(x))*h'(x)#

#f(x) = 3/(x^3-4) = 3(x^3-4)^-1#

If one considers that #g(x) = 3x^-1# and #h(x) = x^3-4#, then:

#f'(x) = (-1) * 3(x^3-4)^(-2) * (3x^2) = -9x^2(x^3-4)^(-2)#

# = (-9x^2)/(x^3-4)^2#