Given 5/(x^2+6x+8) = A/(x+2)+B/(x+4)5x2+6x+8=Ax+2+Bx+4, what is A+BA+B ?
2 Answers
Oct 13, 2017
Explanation:
Given:
5/(x^2+6x+8) = A/(x+2)+B/(x+4)5x2+6x+8=Ax+2+Bx+4
color(white)(5/(x^2+6x+8)) = (A(x+4)+B(x+2))/((x+2)(x+4))5x2+6x+8=A(x+4)+B(x+2)(x+2)(x+4)
color(white)(5/(x^2+6x+8)) = (A(x+4)+B(x+2))/(x^2+6x+8)5x2+6x+8=A(x+4)+B(x+2)x2+6x+8
color(white)(5/(x^2+6x+8)) = ((A+B)x+(4A+2B))/(x^2+6x+8)5x2+6x+8=(A+B)x+(4A+2B)x2+6x+8
Equating coefficients:
{ (A+B = 0), (4A+2B=5) :}
So:
A+B=0
Oct 13, 2017
Explanation:
You are on the right track!
Now, let's set
Now, let's set
So,