Question #29fd4

1 Answer
Oct 16, 2017

#dy/dx=(2)/3csc^2(x/3)# where #csc# is cosec.

Explanation:

#y=-2cot(x/3)#

Differentiate both sides

#d/dx(y)=d/dx(-2cot(x/3))#

Apply the chain rule.

As we know the derivative of #cotx# is #csc^2x#

#dy/dx=-2csc^2(x/3)d/dx(x/3)#

#dy/dx=2csc^2(x/3)*1/3#

#dy/dx=(2)/3csc^2(x/3)#