How do you divide #(x^4-3x^2+12)div(x+1)#?

2 Answers
Oct 16, 2017

Remainder: #10#

Explanation:

Using the Remainder Theorem, substitute #x=-1# into the equation.

#f(-1)=(-1)^4-3(-1)^2+12#
#=10#

The remainder is #10#.

Oct 16, 2017

#color(magenta)(x^3-x^2-2x+2# and remainder of #color(magenta)(10/(x+1)#

Explanation:

#color(white)(.......)color(white)(..)color(magenta)(x^3-x^2-2x+2#
#x+1|overline(x^4+0-3x^2+0+12)#
#color(white)(............)ul(x^4+x^3)#
#color(white)(...............)-x^3-3x^2#
#color(white)(................)ul(-x^3-x^2)#
#color(white)(.......................)-2x^2+0#
#color(white)(.........................)ul(-2x^2-2x)#
#color(white)(......................................)2x+12#
#color(white)(.......................................)ul(2x+2)#
#color(white)(..............................................)10#

#color(magenta)((x^4+3x^2+12) / (x+1) = x^3-x^2-2x+2# and remainder of #color(magenta)(10/(x+1)#