Question #aa777

1 Answer
Oct 22, 2017

(-1)/(3(3x+7))+C13(3x+7)+C

Explanation:

int1/(3x+7)^2dx1(3x+7)2dx

We can rewrite this:

=int(3x+7)^-2dx=(3x+7)2dx

Let's use the substitution u=3x+7u=3x+7. This implies that du=3dxdu=3dx.

=1/3int(3x+7)^-2(3dx)=13(3x+7)2(3dx)

=1/3intu^-2du=13u2du

Now we can use the rule intu^ndu=u^(n+1)/(n+1)+Cundu=un+1n+1+C, where n!=-1n1.

=1/3(u^-1/(-1))+C=13(u11)+C

=(-1)/(3u)+C=13u+C

=(-1)/(3(3x+7))+C=13(3x+7)+C