Question #6bfa5

1 Answer
Oct 23, 2017

(a) dy/dx=-(3x^2+5y)/(5x+3y^2)
(b) y=-37/27x-19/9

Explanation:

(a) Differentiate both sides of the equation.
Take notice that (d)/(dx)y^3 = d/(dy)y^3*((dy)/(dx))=3y^2(dy)/(dx) (Chain Rule)
and d/(dx)xy = y+x(dy/dx) (Product Rule).

d/(dx)(x^3+y^3+5xy)=d/dx65
3x^2+3y^2(dy)/(dx) + 5(y+x(dy)/dx)=0
(5x+3y^2)dy/dx=-3x^2-5y

dy/dx=-(3x^2+5y)/(5x+3y^2).

(b) Substitute x=3,y=2 to dy/dx=-(3x^2+5y)/(5x+3y^2).
The slope of the tangent line is dy/dx=-(3*3^2+5*2)/(5*3+3*2^2)=-37/27.

Therefore, the tangent line is:
y-2=-37/27(x-3)
y=-37/27x-19/9.