How do you solve cos theta= sin thetacosθ=sinθ?

1 Answer
Oct 23, 2017

The answer is +-pi/4±π4

Explanation:

cos(theta)=sin(theta)cos(θ)=sin(θ)

cos(theta)=cos(+-pi/2-theta)cos(θ)=cos(±π2θ) by trigonometric equivalences

theta=+-pi/2-theta+2kpiθ=±π2θ+2kπ with kk any integer

2theta=+-pi/2+2kpi2θ=±π2+2kπ

theta=+-pi/4+kpiθ=±π4+kπ