We can most easily do this via the Chain Rule. The Chain Rule states that, given a function composition f(g(x)), (df)/dx = (dg)/dx *(df)/(dg)f(g(x)),dfdx=dgdx⋅dfdg. Considering the function e^(x^2)ex2, we have g(x) = x^2, f(h) = e^(g)g(x)=x2,f(h)=eg. Then (dg)/dx = 2x, (df)/(dg) = e^(g)dgdx=2x,dfdg=eg, giving us (df)/dx = 2x*e^(x^2)dfdx=2x⋅ex2
For this problem, we would have y(x) = f(g(x)), g(x) = (x^2+4)/5, f(g) = g^5y(x)=f(g(x)),g(x)=x2+45,f(g)=g5. Then (dg)/dx = (2x)/5, (df)/(dg) = 5g^4dgdx=2x5,dfdg=5g4. Substituting (x^2+4)/5x2+45 back in for g, we get...
dy/dx = (2x)/5 * 5((x^2+4)/5)^4 = 2x((x^2+4)/5)^4dydx=2x5⋅5(x2+45)4=2x(x2+45)4