How do you simplify \frac { \sqrt { a } } { \sqrt { a } - \sqrt { n } }?
2 Answers
A couple of ideas...
Explanation:
Given:
sqrt(a)/(sqrt(a)-sqrt(n))
I am not sure what we would consider a simplified expression, but here are some things we can do:
Option 1a - Divide numerator and denominator by
sqrt(a)/(sqrt(a)-sqrt(n)) = 1/(1-sqrt(n)/sqrt(a)) = 1/(1-sqrt(n/a))
Option 1b - Multiply both numerator and denominator by
sqrt(a)/(sqrt(a)-sqrt(n)) = a/(a-sqrt(a)sqrt(n)) = a/(a-sqrt(an))
Option 2 - Rationalise the denominator
We can rationalise the denominator by multiplying both numerator and denominator by the radical conjugate of the denominator...
sqrt(a)/(sqrt(a)-sqrt(n)) = (sqrt(a)(sqrt(a)+sqrt(n)))/((sqrt(a)-sqrt(n))(sqrt(a)+sqrt(n)))
color(white)(sqrt(a)/(sqrt(a)-sqrt(n))) = (a+sqrt(a)sqrt(n))/(a-n)
color(white)(sqrt(a)/(sqrt(a)-sqrt(n))) = (a+sqrt(an))/(a-n)
Explanation:
That's conjugate surd..
See Process Below;