How do you simplify \frac { \sqrt { a } } { \sqrt { a } - \sqrt { n } }?

2 Answers
Oct 25, 2017

A couple of ideas...

Explanation:

Given:

sqrt(a)/(sqrt(a)-sqrt(n))

I am not sure what we would consider a simplified expression, but here are some things we can do:

Option 1a - Divide numerator and denominator by sqrt(a)

sqrt(a)/(sqrt(a)-sqrt(n)) = 1/(1-sqrt(n)/sqrt(a)) = 1/(1-sqrt(n/a))

Option 1b - Multiply both numerator and denominator by sqrt(a)

sqrt(a)/(sqrt(a)-sqrt(n)) = a/(a-sqrt(a)sqrt(n)) = a/(a-sqrt(an))

Option 2 - Rationalise the denominator

We can rationalise the denominator by multiplying both numerator and denominator by the radical conjugate of the denominator...

sqrt(a)/(sqrt(a)-sqrt(n)) = (sqrt(a)(sqrt(a)+sqrt(n)))/((sqrt(a)-sqrt(n))(sqrt(a)+sqrt(n)))

color(white)(sqrt(a)/(sqrt(a)-sqrt(n))) = (a+sqrt(a)sqrt(n))/(a-n)

color(white)(sqrt(a)/(sqrt(a)-sqrt(n))) = (a+sqrt(an))/(a-n)

Oct 25, 2017

(a + sqrt(an))/(a - n)

Explanation:

That's conjugate surd..

See Process Below;

sqrta/(sqrta - sqrtn)

sqrta/(sqrta - sqrtn) xx color(blue)((sqrta + sqrtn)/(sqrta + sqrtn)) -> "Conjugate"

(sqrta (sqrta + sqrtn))/((sqrta - sqrtn) (sqrta + sqrtn))

(a+ (sqrt(a xx n)))/(a - n)

(a + sqrt(an))/(a - n) -> "Simplified"