How do you simplify #\frac { \sqrt { a } } { \sqrt { a } - \sqrt { n } }#?
2 Answers
A couple of ideas...
Explanation:
Given:
#sqrt(a)/(sqrt(a)-sqrt(n))#
I am not sure what we would consider a simplified expression, but here are some things we can do:
Option 1a - Divide numerator and denominator by
#sqrt(a)/(sqrt(a)-sqrt(n)) = 1/(1-sqrt(n)/sqrt(a)) = 1/(1-sqrt(n/a))#
Option 1b - Multiply both numerator and denominator by
#sqrt(a)/(sqrt(a)-sqrt(n)) = a/(a-sqrt(a)sqrt(n)) = a/(a-sqrt(an))#
Option 2 - Rationalise the denominator
We can rationalise the denominator by multiplying both numerator and denominator by the radical conjugate of the denominator...
#sqrt(a)/(sqrt(a)-sqrt(n)) = (sqrt(a)(sqrt(a)+sqrt(n)))/((sqrt(a)-sqrt(n))(sqrt(a)+sqrt(n)))#
#color(white)(sqrt(a)/(sqrt(a)-sqrt(n))) = (a+sqrt(a)sqrt(n))/(a-n)#
#color(white)(sqrt(a)/(sqrt(a)-sqrt(n))) = (a+sqrt(an))/(a-n)#
Explanation:
That's conjugate surd..
See Process Below;