Question #7d059

1 Answer
Oct 26, 2017

#dy/dx=sint/(1-cost)#

Explanation:

We have the functions

#x=t-sint# and #y=1-cost#

If we find out #dy/dt# and #dx/dt# we can divide them and find #dy/dx#

#(dy/dt)/(dx/dt)# #-># #(dy/canceldt)/(dx/canceldt)# #-># #dy/dx#

#color(red)1.# #y=1-cost#

Differentiate both sides with respect to #t#

#d/dty=d/dt(1-cost)#

#dy/dt=0-(-sint)#

#dy/dt=sint# #-># #color(red)A#

#color(red)2.# #x=t-sint#

Differentiate both sides with respect to #t#

#d/dtx=d/dt(t-sint)#

#dx/dt=1-cost# #-># #color(red)B#

Now we divide #color(red)A# and #color(red)B#

#(dy/dt)/(dx/dt)=sint/(1-cost)#

#dy/dx=sint/(1-cost)#