How do you solve t^ { 8} u ^ { 19} v ^ { 6} \cdot t ^ { 37} u v ^ { 0} \cdot t ^ { 8} u v ^ { 0}t8u19v6t37uv0t8uv0?

2 Answers
Oct 26, 2017

t^53u^21v^6t53u21v6

Explanation:

t^8u^19v^6t^37uv^0t^8uv^0t8u19v6t37uv0t8uv0

laws of indices:

a^m*a*n=a^(m+n)aman=am+n
a^0=1a0=1

t^8u^19v^6t^37uv^0t^8uv^0 = t^8u^19v^6t^37ucancel(v^0)t^8ucancel(v^0)

=t^8u^19v^6t^37ut^8u

=t^8t^37t^8 * u^19u u * v^6

=t^53u^21v^6

Oct 26, 2017

t^53u^21v^6

Explanation:

First, we need to know
a^m * a^n = a^(m+n)

(a^m) / (a^n) = a^(m-n)
( additional info. , in this question, we won't use it )

a^0 =1

a=a^1

Then, to do this question, we can first group the like term together:

t^8u^19v^6*t^37uv^0*t^8uv^0
=(t^8*t^37*t^8)(u^19*u^1*u^1)(v^6*v^0*v^0)
=(t^(8+37+8))(u^(19+1+1))(v^6*1*1)
=t^53u^21v^6

this is the answer :) Hope it can help you