How do you simplify 1+cos(x)/1+csc(x)?

1 Answer
Oct 31, 2017

#(1+cosx)/(1+cscx) = (2sinx+sin2x)/(2(sinx+1))#

Explanation:

Start by splitting the numerator and denominator and simplifying.

#1 + cscx = 1 + 1/sinx#
#=(sinx +1)/sinx#

Now perform the division (multiply the numerator by the reciprocal denominator):

#(1+cosx)*(sinx)/(sinx +1) = (sinx(1+cosx))/(sinx +1)#

This fraction becomes: #(sinx + sinx cosx)/(sinx +1)#

By the double angle formula for #sin#, #sinxcosx=1/2sin2x#.

Bringing out the factor of #1/2# in the numerator, the fraction now becomes: #(1/2(2sinx +sin2x))/(sinx +1)#

Simplify to find the fraction: #(2sinx + sin2x)/(2(sinx+1))#.