How do you solve #x=\frac{5}{2}\times (1,8\times 10^{23})\times (x-330)#?

1 Answer
Oct 31, 2017

The short answer is #x=330#

Explanation:

#x=5/2×(1.8×10^23)xx(x−330)#

1)You can start to the simple calculation:

#x=4.5×10^23xx(x−330)#

2)4.5×10^23 is a huge number, let's replace it by A:

#x=A(x−330)#

3) Isolating the #x#s:

#(1-A)x=-330A#

#x=330((-A)/(1-A))#

4)#A# is so big that #((-A)/(1-A))# is infinitesimally equal to 1, therefore,

#x=330#

5)Nevertheless, let's try to calculate the "right answer"

#((-A)/(1-A))=A/(A-1)=(A-1)/(A-1)+1/(A-1)~~1+1/A=1+1/(4.5xx10^23)=#

#1+(2/9)xx10^-23#

No computer can handle with 23 digits numbers. so we have to continue like this:

#x=330((-A)/(1-A))~~330(1+(2/9)xx10^-23)#

#x=330+330xx(2/9)xx10^-23#=330+73.333xx10^-23#

Now we get the ridiculous number of :

#330.000000000000000000000733#