How do you simplify #\frac { x ^ { 2} + 17x } { x ^ { 2} - 5x } + \frac { x ^ { 2} - 6x } { x ^ { 2} - 5x }#?

2 Answers
Nov 1, 2017

#(2x+11)/(x-5)#

Explanation:

#x^2-5x!=0=>x (x-5)!=0=>x!=0 and x-5!=0#
#" "#
#=>x!=0 and x!=5#
#" "#
#(x^2+17x)/(x^2-5x)+(x^2-6x)/(x^2-5x)#
#" "#
#=(x^2+17x+x^2-6x)/(x^2-5x)#
#" "#
#=(x^2+x^2+17x-6x)/(x^2-5x)#
#" "#
#=(2x^2+11x)/(x^2-5x)#
#" "#
#=(x (2x+11))/(x (x-5))#
#" "#
#=(2x+11)/(x-5)#

Nov 1, 2017

#(2x+11)/(x+5)#

Explanation:

First - common factor out x. Then we have:
#[x(x+17)]/[x(x-5)]+[x(x-6)]/[x(x-5)]#

Now you can 'cross out' or 'cancel out' the x variables outside the brackets. Now we have:
#(x+17)/(x-5)+(x-6)/(x-5)#

Now you can collect like terms:
#(2x+11)/(x+5)#