How do you simplify \frac { x ^ { 2} + 17x } { x ^ { 2} - 5x } + \frac { x ^ { 2} - 6x } { x ^ { 2} - 5x }x2+17xx25x+x26xx25x?

2 Answers
Nov 1, 2017

(2x+11)/(x-5)2x+11x5

Explanation:

x^2-5x!=0=>x (x-5)!=0=>x!=0 and x-5!=0x25x0x(x5)0x0andx50
" "
=>x!=0 and x!=5x0andx5
" "
(x^2+17x)/(x^2-5x)+(x^2-6x)/(x^2-5x)x2+17xx25x+x26xx25x
" "
=(x^2+17x+x^2-6x)/(x^2-5x)=x2+17x+x26xx25x
" "
=(x^2+x^2+17x-6x)/(x^2-5x)=x2+x2+17x6xx25x
" "
=(2x^2+11x)/(x^2-5x)=2x2+11xx25x
" "
=(x (2x+11))/(x (x-5))=x(2x+11)x(x5)
" "
=(2x+11)/(x-5)=2x+11x5

Nov 1, 2017

(2x+11)/(x+5)2x+11x+5

Explanation:

First - common factor out x. Then we have:
[x(x+17)]/[x(x-5)]+[x(x-6)]/[x(x-5)]x(x+17)x(x5)+x(x6)x(x5)

Now you can 'cross out' or 'cancel out' the x variables outside the brackets. Now we have:
(x+17)/(x-5)+(x-6)/(x-5)x+17x5+x6x5

Now you can collect like terms:
(2x+11)/(x+5)2x+11x+5