Question #b6b90

1 Answer
Nov 2, 2017

y'=arcsenx+#x/(√(1-x^2))+1/(√x(2x+2))#

Explanation:

Use product rule
y=xarcsenx
y'=x'(arcsenx)+x(arcsenx)'

Derivative of x=1
Derivative of arcsenx= #1/(√(1-x^2))#
Then
y'=arcsenx+#x/(√(1-x^2))#

Now for #arctg√x#

derivative of arctg(u) where u is a function

Is #(d/dx(u))/(1+u^2)#
Then for #√x#

Derivative of √x is #1/(2√x)#
Then
Derivative of arctg√x= #(1/(2√x))/(1+x)#

-> #1/(√x(2x+2))#