Question #9d02e

1 Answer
Nov 3, 2017

#[-4y^2-x^2]/(16y^3)#

Explanation:

First, we can find #dy/dx# by differentiating both sides.

#x^2+4y^2=4#

#d/dx(x^2)+d/dx(4y^2)=d/dx(4)#

#2x+(4*2y)*dy/dx=0#

#8y*dy/dx=-2x#

#dy/dx=(-2x)/(8y)#

#dy/dx=(-x)/(4y)#

Then, we can differentiate it again to get the second derivative.

#d/dx (dy/dx)=d/dx((-x)/(4y))#

#=[4y*d/dx(-x)-(-x)*d/dx(4y)]/(4y)^2#

#=[4y*(-1)-(-x)*4dy/dx]/(16y^2)#

#=[-4y+4xdy/dx]/(16y^2)#

Then, we can sub #dy/dx#that we found in the above and get the final answer.

#=[-4y+4x((-x)/(4y))]/(16y^2)#

#=[-4y-x^2/y]/(16y^2)#

#=[-4y^2-x^2]/(16y^3)#

Here is the answer. Hope this can help you :)