How do you solve #-\frac { 1} { 3} ( x + 5) \geq - \frac { 4} { 9} ( x - 2)#?

2 Answers
Nov 5, 2017

x ∈ [23;+∞>

Explanation:

#-1/3(x+5)>=-4/9(x-2)#

multiplying by 27 because 3*9=27

then
#-9(x+5)>=-12(x-2)#
distributive property

#-9x-45>=-12x+24#

transposing terms
#12x-9x>=24+45#

#3x>=69#

finally
#x>=23#

then x ∈ [23;+∞>

Nov 5, 2017

#x>= 23#

Explanation:

#"to eliminate the fractions multiply both sides of the "#
#"inequation by the "color(blue)"lowest common multiple"#
#"of 3 and 9"#

#"the lowest common multiple of 3 and 9 is 9"#

#cancel(9)^3xx-1/cancel(3)^1(x+5)>=cancel(9)^1xx-4/cancel(9)^1(x-2)#

#rArr-3(x+5)>=-4(x-2)#

#"distributing brackets gives"#

#-3x-15>=-4x+8#

#"add "4x" to both sides"#

#-3x+4x-15>=cancel(-4x)cancel(+4x)+8#

#rArrx-15>=8#

#"add 15 to both sides"#

#xcancel(-15)cancel(+15)>=8+15#

#rArrx>=23" is the solution"#