How do you solve #-\frac { 1} { 3} ( x + 5) \geq - \frac { 4} { 9} ( x - 2)#?
2 Answers
Nov 5, 2017
x ∈ [23;+∞>
Explanation:
multiplying by 27 because 3*9=27
then
distributive property
transposing terms
finally
then x ∈ [23;+∞>
Nov 5, 2017
Explanation:
#"to eliminate the fractions multiply both sides of the "#
#"inequation by the "color(blue)"lowest common multiple"#
#"of 3 and 9"#
#"the lowest common multiple of 3 and 9 is 9"#
#cancel(9)^3xx-1/cancel(3)^1(x+5)>=cancel(9)^1xx-4/cancel(9)^1(x-2)#
#rArr-3(x+5)>=-4(x-2)#
#"distributing brackets gives"#
#-3x-15>=-4x+8#
#"add "4x" to both sides"#
#-3x+4x-15>=cancel(-4x)cancel(+4x)+8#
#rArrx-15>=8#
#"add 15 to both sides"#
#xcancel(-15)cancel(+15)>=8+15#
#rArrx>=23" is the solution"#