How do you find the derivative of #G(x) = sqrtx (x^2 – x)^3#?
2 Answers
Use chain rule and product rule.
Explanation:
As written, we use both the product rule and chain rule.
product rule:
chain rule:
Then with
Explanation:
#"differentiate using the "color(blue)"product rule"#
#"given "G(x)=g(x)h(x)" then"#
#G'(x)=g(x)h'(x)+h(x)g'(x)larr"product rule"#
#g(x)=sqrtx=x^(1/2)rArrg'(x)=1/2x^(-1/2)larr"chain rule"#
#h(x)=(x^2-x)^3larr"differentiate using chain rule"#
#rArrh'(x)=3(x^2-x)^2 (2x-1)#
#G'(x)=3x^(1/2)(x^2-x)^2(2x-1)+1/2(x^2-x)^3x^ (-1/2)#
#color(white)(rArrG)=1/2x^(-1/2)(x^2-x)^2[6x(2x-1)+x^2-x]#
#color(white)(xxxx)=1/2x^(-1/2)(x^2-x)^2(13x^2-7x)#
#color(white)(xxxx)=1/2sqrtx(x^2-x)^2(13x-7)#