How do you find the limit of (1-cosx)/(xsinx)1cosxxsinx as x->0x0?

2 Answers
Nov 12, 2017

lim_(x rarr 0) (1- cosx)/(x sinx) = 1/2

Explanation:

First of all, since as x rarr 0, sinx rarr 0 also, we can rewrite the denominator as x^2.

Hence we need to find: lim_(x rarr 0) (1- cosx)/(x^2)

Since this still results in an indeterminate 0/0, we apply L'Hopital's Rule.

(d/dx(1-cos x)) / (d/dx(x^2)) = sinx/(2x)

If we substitute 'approaching zero' as a less formal 1/oo, we arrive at the expression: (1/oo)/(2/oo).

After cancelling out the infinities, this leaves 1/2.

Or simply let sinx =x again, which gives:

sinx/(2x) = x/(2x) = 1/2.

Nov 12, 2017

Use lim_(xrarr0)sinx/x=1

Explanation:

((1- cosx))/(x sinx) ((1+cosx))/((1+cosx)) = (1-cos^2x)/(x sinx(1+cosx))

= sin^2x/(x sinx(1+cosx))

= sinx/x * sinx/sinx * 1/(1+cosx)

lim_(x rarr 0) (1- cosx)/(x sinx) = lim_(x rarr 0)(sinx/x * sinx/sinx * 1/(1+cosx))

= (1)(1)(1/(1+1))=1/2