Question #0c317

1 Answer

1sin(x)cos(x)

Explanation:

Remember the trigonometric identities

  • sin2(x)+cos2(x)=1
  • tan2(x)+1=sec2(x)
  • cot2(x)+1=csc2(x)

So

cot(x)sec2(x)

=cot(x)[tan2(x)+1]

=tan(x)+cot(x)

=(sin(x)cos(x))+(cos(x)sin(x))

=(sin2(x)sin(x)cos(x))+(cos2(x)sin(x)cos(x))

=sin2(x)+cos2(x)sin(x)cos(x)

=1sin(x)cos(x)